
A D-R149 8i2 PARALLEL PROCESSING OF ENCODED BIT STRINGS(U) MARYLAND i/I
UIIV COLLEGE PARK CENTER FOR AUTOMATION RESEARCH
A Y W NOV 84 CRR-TR-98 RFOSR-TR-84-ii~i

UNCLASSIF49E- F4--002 -3C6 F/G 12/ NL

mmmhhhhmmhus

flll __ :t. ,o l _lIIII

--M3
"1. L 2.0

111h1"2 111112.0

MICROCOPY RESOLUTION TEST CHART

NW iTONAL H AU :-[I AR ., .

RFPRonUCM AT GOVFRi ',4:flWC Fx(pFVEq

AFOSR-TR. :1 D181

(N CAR-TR-98 F49620 -83-C-0082
CS-TR-1455 November 1984

PARALLEL PROCESSING OF ENCODED BIT STRINGS

Angela Y. Wu

Dept. of Mathematics, Statistics,
and Computer Science
American University
Washington, DC 20016

I -

HUMAN/COMPUTER INTERACTION LABORATORY

*. CENTER FOR AUTOMATION RESEARCH3
Approved for piblO rO1et

L...J distributloa.l""Ao

UNIVERSITY OF MARYLAN
COLLEGE PARK, MARYLAND

20742 lE ECTEJI

85 0

85 01 16 097,, ,

Angela Y.]

1L---

CAR-TR-98 F4962O'T83-C-0082

CS-TR-1455 November 1984

PARAL.LEL PROCESSING OF ENCODED BIT STRINGS "

Angela Y. Wu -

Dept. of Mathematics, Statistics,
and Computer Science
American University
Washington, DC 20016

ABSTRACT

.any operations on strings of length n can be speeded up

by a factor of p using p processors. String operations can
also be speeded up, even when a single processor is used, by
compactly encoding the strings, e.g. using run length code.
This paper shows how to combine tnese two approaches by using
p processors to process compactly encoded strings.

DTIC 'SELECTE
JAN 2 8 85_ O

:i vB

Research sponsored by the Air Force Office of Scientific Research

(TFSC), under Contract F49620-83-C-0082. The United States Govern-
ment is authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright notation hereon. The
help of Janet Salzman in preparing this paper is gratefully acknow- 6

ledged. The parallel merging algorithm is based in part on the work
of Simon Kasif [7], and its application to Boolean operations was
suggested by Azriel Rosenfeld.

DISTBUTON 8TATEENf

Appoved im wublic eLos
Distribuion Untfi.ited

1 Introduction

In the processing of a one-dimensional string of n

symbols, the time complexity f(n) of a nontrivial sequential

algorithm can at best be O(n) since the algorithm has to look

at each symbol of the string at least once. One way to speed

up the task is to use multiprocessor systems to process the

string in parallel. In this case, the time complexity may

become f(n)/p when p processors are used.

Another method to possibly speed up the task is to rep-

resent the string in some compact way instead of simply as a

linear list of symbols. For example, a binary string of length

n can be represented by its run length code, that is, by a

string of m integers a a 2a 3a 4.am where ai>0 except for a1

which may be zero, a2i 1 specifies the number of 0's and a2i

specifies the number of l's. For example, the run length

code 0,3,2,4,1 represents 1110011110. In general m<n. These

compact representations can often be processed quite effi-

ciently by one processor.

A one-processor system may even be able to process a com-

pact representation of a string faster than a multiprocessor

system working with the original long string. To see this,

consider the task of finding the number of l's in the string.

Using the run length code representation, a 1-processor system
m , .m

can accomplish this in 2 steps by summing the a2 i s (lsLa).

A p-processor system working with the original string of length
n

n needs at least E steps for each processor to find the number

p-.

Ia

of l's it has, and it then takes log p steps to add the partial

sums up. -+log p may be larger than
p 2

Using p processors to manipulate the compact representations

in principle should achieve further speed up. However, the

compactness of the representations often makes this difficult.

In this paper, we-study- various representations of bit

strings and parallel algorithms to process these representations

using a multiprocessor system. Section 2 describes the parallel

processing model we use. Sections 3 and 4 discuss various com-

pact representations of strings, and their conversions to each

other. Section 5 presents algorithms to process run length

coded strings. Section 6 briefly discusses the extension of

this work to representations of two-dimensional objects.

*--_ . . .

, : r1s :: F]~ca

T . -F

~~ t. y. li'Codea

2. Computational model

The parallel computational model used in this paper is

a p-processor synchronous system. Each processor is identi-

cal, has its own local memory, and has a unique address.

At each time step, a processor can send out one message and

receive one message. Associated with each message is either

a destination address or a pattern. A message sent by destina-

tion can only be accepted (picked up) by the processor with

that address. A message sent by pattern can be accepted by

any processor with that specified pattern. It is possible that

a processor is the intended receiver of more than one message

at a particular time step. In this case, only one of the mes-

sages (the first one that arrives) will be picked up, and the

receiving processor does not know that there are other mes-

sages not picked up by it. At the end of a time step, a pro-

cessor can tell whether its outgoing message was picked up by

some processor(s), even though it cannot tell which processor(s)

picked up the message if it was sent by pattern.

This model of communication is based on the ZMOB multipro-

cessor system which is being built at the University of Maryland.

The processors are Z80 microprocessors and they are connected

by a fast "conveyor belt" which consists of p shift registers.

Currently, ZMOB is operational with p=3 2 and it is expected

to reach p=256 when the system is complete. A detailed descrip-

tion of ZMOB can be found in [1-4]. The algorithms in this

paper can be executed on ZMOB.

+- S-

-S + . .- + + + ' ++ + . "? + + . - . +- - . " " "

This ZMOB model of computation allows a flexible

nication network. Its address scheme permits one to rc

figure the network easily into any graph configuration.

(It may take d time steps to simulate a node in the graph

having d incoming arcs).

ZMOB is not so strong as shared memory models of

parallel computation. In ZMOB, many processors can receive

the same information from one processor; this is the same as

reading from the same memory location. However, a processor

can send out only one message at a time. Thus, it is not

possible for two different processors to read from two locations

within the same processor's local memory at the same time step.

Restricted simultaneous writes (as long as the same value is

written) can be performed as long as each processor's

local memory is rewritten with only one value.

3. Bit string representations

This section discusses various ways to represent bit

strings, and their suitability in a multiprocessor

environment. On ways of representing binary arrays see (]

(a) The bit string itself

A bit string b 1 b 2.* b n can be represented as a linear

list of 0's and l's -- for example, 001111100011. If we

have p processors, we can partition the string into p parts

of equal length (perhaps with the exception of the last part,

which may be shorter) so that each processor is responsible

* for one segment of length ~.It would be useful for each

processor to know its segment number. This can be done impli-

citly by letting processor i contain the ith segment; or it

can be done explicitly by storing the number i or the position

(index, coordinate) of its first element.

(b) Run length code

In this representation, a bit string is specified by a

sequence of integers a 1a 2-a M where a i>0 for i>l and a 1 0 The

bit string consists of a 1 consecutive O's (a run of a 1 0's),

followed by a 2 l's, followed by a 3 O's, followed by a 4 1's, etc.

For example, 2542 represents the bit string 0011111000011 and

02542 represents 1100000111100. The run length code can be

partitioned into p segments of [-1l (except for the last) runs

each. Each processor will then be responsible for f~1 runs.
p

The number of bits each processor represents may differ. It

-4 would be useful for each processor to know the coordinate (posi-

tion in the bit string) of the first bit that it represents.

0V A

(c) Run-end code

This is similar to the run length code except that instead

of specifying the lengths of all the runs, it specifies the

positions of the beginning and the end of each run of l's. In

general, this uses more storage than specifying the lengths.

But for a multiprocessor system, we are more concerned with

speed since in general there is enough memory space to store

the run ends. We can partition the run-end code in the same

way as in the run length code case. The run-end code also

allows the possibility of having the runs in any random order,

as on asC i-l' 2i specifies a run of l's, and it is not

necessary that C 2i-1<C 2l*However, to use the unsorted

runs efficiently, we would often have to sort them first.

Therefore, in this paper, we will only consider run ends in

increasing order.

(d) Bin-tree

This is a one-dimensional equivalent of a quadtree rep-

&resentation for a two-dimensional array. More specifically,

a bit string is represented by a binary tree as follows:

The root of the binary tree represents the entire string. If

the string that a node represents is not homogeneous (all 0's

or all l's) then the string is divided into two halves. The

first half is then represented by the left child of the node

0 and the second half by the right child. This division process

stops when the string is homogeneous; in particular, it cer-

tainly stops when the string is of length 1.

The bin-tree takes more space to store than the run length

or run end code. A run of l's or a run of O's can be distri-

buted among several leaf nodes. In a multiprocessor system,

if we use a processor to represent one node, then the number

of runs we can represent using p processors is less than p.

Clearly, we can do better using the run length or the run end

code. Note that the bin-tree may be of value in sequential

processing because it allows one to find a particular bit or

block of bits in O(log n) time if the bit string is of length n.

(e) Run-binary-search tree

The runs of l's in the string are stored in the nodes

of a binary tree using coordinates as the key. By the same

reasoning as in the bin-tree case, this is not particularly

useful in a multiprocessor environment. In a single processor

system, if the run ends are stored sequentially in increasing

order, we already implicitly have a balanced binary tree.

This representation is useful only if there are a lot of dynamic

insertions and deletions.

Since the tree representations are not very useful, we will

not consider them further.

4. Conversion between conversion

Since run length codes and run-end codes are very similar

to each other, clearly they can be converted to one another

in time proportional to the number of runs per processor.

In this section we consider the conversion between run length

code and the bit string. We will assume that processor i+l

is to the right of processor i, and will refer to it as the

right hand neighbor of processor i.

I

- . .. - ,- .. . [..

4.1 Bit string to run length code

Suppose we are given a bit string of length n represented

as a linear list of O's and l's and partitioned into p equal

length parts, where each of p processors contains one segment

of length ~.It is obvious that in time ~,each processor can

conver: its a bits into run lengths. However, a processor

needs to collate its first and last runs with its neighbors.

A very long run of 0's and I's may be distributed in k pro-

4 cessors. After all the runs are obtained, they have to be

redistributed so that each processor has the same number of

runs.

After each processor converts its bit string into runs

with the value 0 or 1 (for brevity, we will refer this as the

color of the run), each processor sends (without retaining)

its rightmost run (together with its color) to its right-hand

neighbor if it has more than one run. Otherwise, only the

color of the run is sent. Each processor receiving a value

attaches it to or merges it with its first run depending on

whether the two colors are the same. Each processor also now

knows that

(1) It does not have part of a long run (a run which is now

in more than one processor) , if it has just accepted a run

and sent out a run.

or (2) It has the beginning of a long run, if it initially had

only one run and accepted a run from its neighbor.

or (3) It has the end of a long run, if its left neighbor

is of length n, and its own first run has the same
p

color and is of length <n.
p

or (4) Its left neighbor is the end of a long run, if its

left neighbor's last run is of length - and its own
p

first run is of a different color.

or (5) It is the middle and possibly the end of a long run,

if both its left neighbor and itself have only one

run of length ! with the same color.

To clarify situation (5) , the processor who knows its

neighbor is the end of a long run sends a message to its

left neighbor.

Now each processor i containing the beginning of a long

run sends its address and run length to its right neighbor

i+l. At the next step, both i and i+l send the address i

and run length to the right neighbors at distance 2 away,

i.e., to i+2 and (i+l)+2. Only the middle and end processors

* who have not yet received any beginning address accept the

address. At the next step processors ii+l,i+2,i+3 send

the address and run length to i+4,i+5,i+6,i+7. Continuing

*0 in this way, in less than or equal to O(log p) time, any pro-

cessor that is the end of a long run has found the beginning

address of its run and it can calculate the length of the

0 run and store it. Any middle processor indicates it contains

zero runs as soon as the beginning address reaches it.

K
I

S

Now all the runs are collated and each processor knows

the number of runs it has (O). The system needs to distri-

bute the runs evenly to the p processors.

We can calculate the total number of runs by simulating

a binary tree structure, using processor 2 as the root, pro-

cessors 2 and 3P as its left and right children, etc. Since4

p is known to all the processors, any processor knows if it

is a leaf node (has depth p). At step 2i-1 (i-l), a processor

at depth i+l accepts the number of runs its left child (at

depth i) has. At step 2i, a processor at depth i+l accepts

the number of runs from its right child. The sum of the

runs its two children have and it has is then sent up to the

next level in the next two steps. In 2 log p steps, the root

processor has the total number of runs (say m) in the bit

string. Each processor also knows the number of runs in its

left and right subtrees. The root can determine the number of

runs each processor needs to have and broadcast this number

to all the processors. In order for a processor to know to which

processor its runs should be moved, it needs to have its runs

numbered. Each processor finds the values Lcount and Rcount

where Lcount(node) = number of runs before the first run in

the node's left subtree and Rcount(node) = number of runs before

the first run in the right subtree. Hence Lcount (root) = 0 and

Rcount (root) = number of runs in its left subtree + number of

runs in the root. The root sends it Lcount and Rcount to its

.S

left and right children. Each child node can then set its

Lcount = number just received from its parent, Rcount = number

just received from its parent + number of runs in its left

subtree + number of runs it itself contains. After 2 log p

steps, each processor knows the numbers of its runs and thus

the destinations of its runs. The distribution of the runs

must be "orchestrated;" otherwise there may be many runs sent

to the same processor simultaneously. At the ith distribution

step, each processor sends out to the destination processor a

run which is to be the ith run in that processor. In this case,

at each step, at most one run is sent to each processor. If a

processor contains more than one ith run, say k of them, then it must

have contained at least (k-l)1+ runs. The other ith runs
ar en t tpsim i2m

are sent at steps i+-, i+2-, etc. Since each processor ini-p p
ntially has - bits, the maximum number of runs it has isn

Therefore, the distribution of runs takes time fl. In summary
p

a bit string can be converted into evenly distributed run length

code in O(n + log p) time.
p

4.2 Run length code to bit string

Suppose the run length code (having m runs) of a string is

distributed in p processors with - runs each. If no other
p

information, such as the beginning coordinates, is given to

the processors, then in O(-) time, each processor can find the
p

total number of bits its runs represent by summing the run

lengths. Simulating a binary tree as in Section 4.1 allows

the root to find n, the total length of the entire string in

O(log P) time. Using the method used in Section 4.1, in O(log p)

time each processor knows the coordinates of its runs, and thus

the destination of each of its runs. Note that some of the

runs may have to be split among several processors. One way to

distribute the runs is to simply cyclically shift each run to

the right until it finally arrives its destination. This takes
m

O(-+p) time. After each processor receives its runs, it can
p

convert them into bits.

!.S
I

".I

5. Operations on run length coded strings

5.1 Operations involving only one string

In this section, we assume that bit strings of length n

are represented by their run length codes. Each processor

knows the coordinate of the first bit it represents. Each

of the p processors has the same number (=-) of runs.
p

(a) Finding the total number of l's in the string

Each processor finds the number of l's it represents in

O(E) steps by simply summing the lengths of the runs of l's it
p

contains. It takes O(log p) time steps to add up these p sums

by implicitly simulating a binary tree as follows: At step 1,

processor 2j-1 (j=l,2,..., 2) sends its value to processor 2j'2

which adds the value it receives to its own value. Each pro-

cessor 2j(lEjf) now has the number of l's in processors 2j-1
22

and 2j. At step 2, processor 2 2j-2 (j=1,2,...,) sends its

(new) value to processor 22 j which adds the value it receives

to its own value. At step i, processor 2 ij-2 i - I (j=l,....I)
2

sends its value to processor 21j where an add is performed,
unless 2 j is larger than p. If 2ij>p then 2 ij-2i sends its

value to processor p who adds the value it receives to its own

* value. At the end of k-i (2 k-l<p2 k) steps of sending and

adding values, processor p has the total sum. If necessary, it

can broadcast the result to all p processors.

0 (b) Finding local patterns in a string

A bit pattern is a sequence of O's and l's specified by its

run length code. The pattern is local if it contains k runs and

-

k .Each processor can use the Knuth-Morris-Pratt algorithm [6]
p m

to find occurrences of the pattern in O(- +k) time steps as
p

long as we consider it a match for the first and last run

of the pattern if the corresponding runs in the string are lon-

ger than the first and last runs in the pattern. If a processor

(i) finds that the last few runs it contains match the beginning

runs of the pattern, it sends this information to its right-hand

neighbor (i+l) which checks if the pattern continues to match.

Processor i+l stops the pattern finding process after either this

(across processor boundary) matching is successful or if a tempo-

rary failure causes the first run of the pattern no longer to be

in processor i.

(c) Point in interval

Given a coordinate i, we want to find the value (0 or 1) of

the ith bit in the bit string. When a processor receives the

address i, it compares i with the address of its first bit. If i

n address (first bit) then '<' otherwise '>' is sent to its left-

hand neighbor (except for processor 1). A processor that has

result ! and that receives > from its right-hand neighbor (pro-

cessor p has no right-hand neighbor and assumes it receives -)

knows that it contains the ith bit. It then scans the run lengths

in order and adds them up until it reaches a run which contains the

ith bit; the value of this run is reported. This takes O(-) steps.
p

If the runs in the processor are specified by run ends, then a

binary search can be performed and the value of the ith bit can be

found in O(log a) time.
p

(d) Finding the address of the ith 1 in the string

Each processor can find the number of l's it contains in

O(-) time. Simulating a binary tree as in Section 4.1 allows
p

processor j to know the total number of l's that processor

1,2,.. .,j-1 has in O(log p) time. Hence the processor con-

taining the ith 1 in the string can find the address in another

m
- steps.
p

(e) Finding the longest run of l's

Each processor can find the length and address of its

longest run. The length Z i and address (i,ai) (i=2j-l) are

then sent to i+l where a comparison of Zi and Zi+1 is made.

The length and address of the longer run are sent from processors

22 j-2 to 229 (l:jf-). Continuing this way, the length and

address of the longest run of l's will be in processor p after

O(+ log p) time steps.

(f) Finding the centroid of the bit string

In O(-) time, each processor can find the total number of

l's it has and the sum of the coordinates of the I's it contains.

Then, as in (a) of this section, the total number of l's in the

string and the sum of the coordinates of the l's in the entire

string can be determined by processor p in O(log p) steps. Divi-

sion gives the coordinate of the centroid of the string. This

process takes O(a + log p) time.
p

5.2 Operations on two strings

Suppose the strings are represented by run length codes

and each run's beginning and ending positions (coordinates)

in the original bit string are given. These coordinates are

a sorted list of numbers. Let alla 2 ,... ,asas+1 1 ...,a2s'a2s+l

,a (q=) be the coordinates of the runs of one string,
qs 2

where s is even, a(i l)s+l,..,ai are contained in processor

i (li~q), and a2j- 1 a 2j are the beginning and ending coordi-

nates of a run. Let bl,b2 ,...,btlbt+l,...,b2t,b 2 t+l,...,bqt

(q= P) be the coordinates of the runs of the other string,
2

where b(i l)t+l,...,b. are in processor P+i (1:ifq).

As indicated in [7], merging of these lists can be used

to perform Boolean operations on the strings. We will first

present an algorithm to merge two sorted strings of integers

together. In the following, letPE i denote processor i.

Step 1 Processor i finds the index of the processor f (q<f ip)

such that b (fil)t<ais.bfi t (for lfi:q) and a(f l)s<b itaf (for

q+lliip) using a divide and conquer method.

PEI broadcasts the value of a to PE's q+l,...,p. Each PE
2

j (q<j:p) compares b.t with the value it receives and sends (if

j#p) the result <(bjt<a) or ?(b. tas) to its right-hand

22
neighbor PE j+l. If PE p(being a last processor) finds its

result is <, then bqt<a <a <...<aq. PE p therefore sends

the address p+l to the PE's 1 through q, so that PE's l,...,q

know that they are larger than all the elements in the second

6

- -T
w

.. -. -- .- . . .

string and PE's 1,.. - 1 know that they have to send their' 2

last elements to PE's q+l,.... P. If PE q+k's result is > but

PEq+k-l's result is <, (PE q+l being a beginning PE ignores

results from PE q), then PE k+p knows that b -a(£b and(k-1) t- kt

sends its address to PE's 1,...,q. PE a records the address it

receives and stores it as f . PE q+k-l marks itself as a new

last processor and PE q+k marks itself as a new first processor.

Now PE's 1,2,...,a -1 have f values in q+l,...,q+k, and PE's
'29

2 + ,...,q have f values in q+k,...,p. Thus each string is

divided into two parts. Now simultaneously, PE a and PE4 4

can find f and f Recursively in O(log2 p) steps all

the fis for 1i<q are found. Similarly, the fi 's for q+l<i~p1

can be found in 0(log 2 p) steps.

Step 2 Every processor i (except q and p) sends its last

value (ais or bi) to its right-hand neighbor processor i+l.

is itCall this value Ci+ I . Set C I=0 and C q+l= 0.

Each processor sends out its list of values (including

Ci) one at a time. Processor i picks up the values sent by

PE fi if fiq+l or p+l. This uses the pattern matching com-

munication method. Note that for each i, there is only one

fi but several processors may have the same f values. Pro-

cessor i merges and keeps the values it originally contained and

it receives, which are larger than both C. and Cf and C i+l and
1f

Cf +l. Clearly, this can be accomplished in 0(s+t) time.

el

Since the values in the processors are in increasing

order, each value in the original lists appears in the

final list only once with the exception that if aisbfi

or a f s=bit, then the values in processors i and f i r

identical as the following figure shows:

i(9) 2(11) 3(12) 4(12) 5(13) 6(14) 714) . 7.

a1 a a's a a 4 a5 a 6 A

db 0
b2 b3t bd b4 bt 7 t

9(2) 10(2) 11(3) 12(4) 13(6) 14(8) 15(8) 16d

The fi's are in parentheses. Processor 1 contains the values

in a .,...,a s and b ,...,b . Processor 9 contains the values

in as+l,..., ad2a
nd bd9+l,...,bt , etc. Processors 4 and 12 both

contain values in a3 s l,.,a 4 s and bd +1,...,b Since
12 4

processor q+i knows b =a s, it can simply indicate it will
it fq~q+i

contain no values and ignore the merging process and leave it

for processor fq+i to do the merging.

Step 3 Processor i knows that the values it contains belong

to segment i+fi-q-i of the final merged list. This is true be-

cause of the way the values are obtained. Therefore, if we want

to have the values in consecutive processors in order, we can

have each processor i send out its values one by one to pro-

cessor i+fi-q-l. This can be accomplished in O(s+t) time.

This algorithm shows that two sorted strings of length mi,

m2 each evenly distributed in q= 2 processors, can be merged
i m 2

in O(- + m- + log q) time.
q q

I

If we want to find the AND of two bit strings, we just

need to make sure that the beginning and ending coordinates of

a run get sent to the processors whenever one of them is

sent in step 2. Instead of merging, the AND operation is done.

If we want to find the OR of two bit strings, we simply do the

OR operation instead of the AND. We must also check for possi-

ble collating of runs after the AND or OR is done, as in

Section 3.

0

0

04

6. Concluding remarks

We have shown that many operations on run length representa-

tions of bit strings can be speeded up using a multiprocessor

system. In most cases, an overhead of log p is needed for an

orderly communication scheme to accumulate information from the

p processors.

A string can be regarded as a 1-dimensional array; similarly,

a digital picture is a 2-dimensional array. There are various

compact representations of binary pictures, including run length

code (row by row), chain code (of the borders between regions of

O's and regions of l's), quadtrees, or the medial axis trans-

form [5]. It is of interest to see how we can use a multipro-

cessor system to perform operations using these compact repre-

sentations.

It is not clear how one should distribute the representation

to the p processors. It was shown in [4] that the best way to dis-

tribute an nxn picture specified by its pixels' gray levels is to
nn

partition the picture into p subpictures of size 7- each. Then

each processor can be responsible for one subpicture.

If a picture is represented by the run length codes of its

rows, operations such as finding the number of black pixels in a

picture, or taking the AND or OR of two pictures, can be done row

by row using the algorithms described in this paper. This is pos-

sible because the two-dimensional properties of pictures are not

used in these operations. An operation such as finding the centroid

of a two-dimensional picture requires knowledge of the two-dimensional

coordinates of the pixels; however, each pixel does not interact

with the other pixels. A slight modification of the algorithm

in this paper solves the problem.

Further study is needed to develop algorithms for truly

two-dimensional operations or to handle representations other

than run length codes.

References

1. C. Rieger,ZMOB: handware from a user's viewpoint, Proc. IEEE

Workshop Pattern Recognition and Image Processing (PRIP),

Dallas, TX, August 1981.

2. C. Rieger, ZMOB: Doing it in parallel!, Proc. IEEE Workshop

CAPAIDM, Hot Springs, VA, November 1981.

3. C. Rieger, R. Trigg and R. Bane, ZMOB: A new computing engine

for AI, Proc. IJCAI-81, Vancouver, B.C., Canada, August 1981.

4. T. Kushner, A. Wu, and A. Rosenfeld, Image processing on
ZMOB, IEEE Trans.Computers, vol. C-31, 943-951 (1982).

5. A. Rosenfeld and A. Kak, Digital Picture Processing, Academic

Press, New York (second edition, vol. 2), chapter 11 (1982).

6. D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching

in strings, SIAM J. Computing, vol. 6,323-350 (1977).

4 7. S. Kasif, Parallel searching and merging on ZMOB, University

of Maryland Computer Science TR-1405, June 1984.

I

6

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution

2b DECLASSIFICATION/DOWNGRAOING SCHEDULE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUM jR()

CAR-TR-98; CS-TR-1455. -

6& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University of Maryland (If app cable)
Air Force Office of Scientific Research

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Center for Automation Research Directorate of Mathematical & Information
College Park ND 20742 Sciences, Bolling AFB DC 20332-6448

So. NAME OF FUNDING/SPONSORING B0. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It applicabl)

AFOSR NM F49620-83-C-0082

Sc ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

Bolling AFB DC 20332-6448 61102F 2304 A7

11 TITLE (Include Security Cla.sification)

PARALLEL PROCESSING OF ENCODED BIT STRINGS
12. PERSONAL AUTHOR(S)

Anc.ela Y. Wu
131. TYPE OF REPORT b. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Day) 15. PAGE COUNT

Technical FROM TO NOV 84 24
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on muerve ifnecesuar' and identify by block number)

FIELD GROUP SUB. GR. Parallel processing; bit strings; run length codes.

19. ABSTRACT (Continue on reuerse if necesary and identify by block numberl

Many operations on strings of length n can be speeded up by a factor of p using p

processors. String operations can also be speeded up, even when a single processor is

used, by compactly encoding the strings, e.g., using run length code. This paper shows

how to combine these two approaches by using p processors to process compactly encoded

strings.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 9) SAME AS RPT. DTIC USERS - UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
fInclude Area Code)

Dr. Robert N. Buchal (202) 767- 4939 NM

* DD FORM 1473, 83 APR EDIT IO OF I JA71?SLT.UNCLASSIFIED

5 01 E SECURITY CLASSIFICATION OF THIS PAGE

FILMED

3-85

* DTIC :

